Appears in A. Balint, A. Belov, M.J.H. Heule, and M. Jirvisalo (eds.), Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions,
volume B-2013-1 of Department of Computer Science Series of Publications B, University of Helsinki 2013. ISBN 978-952-10-8991-6.

Instance generator for encoding preimage,
second-preimage, and collision attacks on SHA-1

Vegard Nossum
Department of Informatics, University of Oslo
Oslo, Norway

Abstract—The instance generator described in this document
encodes three attacks on the cryptographic hash function SHA-1.
Unlike most instance generators for cryptographic hash func-
tions, our encoding is not based purely on the Tseitin transform-
ation. In particular, we encode modular addition using column
sums represented as pseudo-boolean constraints and minimised
in clausal form using the heuristic logic minimiser ESPRESSO.

I. INTRODUCTION

SHA-1 is a cryptographic hash function that was published
by the NIST in 1995 [1]. Cryptographic hash functions are
functions which are “hard to invert”; in particular, this means
that a given function f should satisfy the following three
properties:

1) Preimage resistance. Given a hash H, it is infeasible

to find a message M such that f(M) = H.

2) Second-preimage resistance. Given a message M, it is
infeasible to find another message M’ such that f(M) =
1Y),

3) Collision resistance. It is infeasible to find distinct
messages M and M’ such that f(M) = f(M').

In this document, we describe an instance generator that
encodes the corresponding attacks against the compression
function of SHA-1 as SAT problems. The attack is successful
if the SAT solver is able to find a solution to the instance.
Given that SHA-1 was designed with these three properties in
mind, we expect the resulting instances to be among the most
difficult combinatorial problems for a SAT solver.

II. PARAMETERS
A. General parameters

To seed the generator’s random number generator, use
——seed 1, where ¢ is an integer.

The type of attack to encode can be specified
using one of --attack preimage, --attack
second-preimage, or ——attack collision.

B. Difficulty parameters

For preimage attacks, there are three difficulty parameters:
——rounds t, where 16 < t < 80, ——hash-bits m,
where 0 < m < 160, and ——message-bits n, where
0 < n < 512. See section III for more information about
the impact these parameters have on the expected hardness of
the resulting instances.

C. Format options

The generator supports output in both CNF and OPB
formats, using ——cnf and ——opb; exactly one of these
must be given. Since the rules of the SAT Competition 2013
mandate that no comment follows the “p” line, we provide an
option ——sat2011 that outputs CNF files that strictly follow
the rules of the SAT Competition 2011.

III. EXPECTED HARDNESS

Given that SHA-1 was designed to be hard to crack, it is
highly unlikely that any solver will be able to solve an instance
in reasonable time; however, we have measured the mean
running time for MINISAT on a series of reduced-difficulty
instances encoding preimage attacks.

The three difficulty parameters for preimage attacks are
number of rounds, number of fixed hash bits, and number of
fixed message bits.

The full SHA-1 algorithm has 80 rounds, of which (only)
the first 16 take input directly from the message to be hashed.
Therefore, the possible number of rounds are between 16 and
80, where 16 is a very easy instance and 80 is a very hard
instance. To see the effect of the number of rounds, we lowered
the number of fixed hash bits. We observed three distinct
phases; between 16 and 21 rounds, the instances are trivial
to solve. Between 22 and 26 rounds, the difficulty increases
extremely rapidly (an instance with 26 rounds takes approx-
imately 2!! times longer to solve than an instance with 22
rounds), and from 27 rounds onwards, the difficulty increases
very slowly (an instance with 80 rounds takes approximately
only twice as long to solve as an instance with 27 rounds).

The number of fixed hash bits varies between 0 and 160 and
effectively allows us to adjust the number of bits in the hash;
with a value of 0, any message will be a solution (thus, an
extremely easy instance), and with a value of 160, we require
the message to hash exactly to the given hash value. The
difficulty of the instance is roughly (but not quite) exponential
in the number of fixed hash bits.

In the full SHA-1 algorithm, the input to the compression
function is 512 bits of the message. Thus, 2°!2 is an upper
limit on the size of the search space of a brute force search
for a preimage. By adjusting the number of fixed message bits,
we effectively give the solver parts of one known solution. By
increasing this number, we effectively lower the search space
of a brute force search. However, our observations indicate that
by fixing a small number of bits (i.e. less than 32), the problem

119

becomes drastically more difficulty to solve. Only by fixing a
very large number of bits (i.e. more than approximately 512 —
24) does the problem become easier to solve.

See [2] for more detailed information about the hardness as
a function of these parameters.

For the SAT Competition 2013, for instances that on av-
erage roughly take around the time limit of 5000s to solve
using MINISAT, we suggest the following combinations of
parameters:

e 22 rounds, 128-160 hash bits, and 0 fixed message bits;
o 23 rounds, 64-96 hash bits, and 0 fixed message bits;
o 80 rounds, 8-12 hash bits, and 0 fixed message bits.

IV. ENCODING OF 5-ARY 32-BIT MODULAR ADDITION

Each round of SHA-1 includes exactly one 5-ary 32-bit ad-
der. Expressing a constraint over 160 boolean variables (one of
the inputs is an integer constant and is therefore disregarded),
this actually constitutes a large part of the instance in terms
of the number of clauses needed to encode it.

One very simple and frequently used way to encode addition
is to use the Tseitin transformation on a standard ripple-carry
adder circuit. This typically means introducing a lot of extra
variables: one for each gate in the circuit. We take a different
(and, we believe, novel) approach based on column sums
expressed as pseudo-boolean constraints and further encoded
in clausal form using the ESPRESSO heuristic logic minimiser.

Consider the following grade school addition schema for
three binary numbers, z, y, and z, and their sum, w:

C3
(6] (5]
co
r3 T2 I To
Yys Y2 N Yo
+ 23 22 21 2
= w3 Wz w1 W

The sum of three bits is either 0, 1, 2, or 3, and thus can
be represented by a two-bit number. For the first (rightmost)
column, we let cowq be the sum of ¢, yo, and 2, and express
it with the following pseudo-boolean constraint:

To + Yo + 20 = 2¢9 + wo

The carry bit cq is added to the next column, which is
summed in a similar way. However, the sum of four bits is at
most 4 and must be represented with three bits, in this case
cocywy. Thus, we obtain the constraint for the second column
sum:

co+x1+1y1 + 21 =4c +2¢1 + uy

We continue in the same way for the remaining columns,
with one small exception: since we are encoding modular
addition, we will get some extraneous carry bits towards the
end that should simply be discarded. These carry bits are
termed dummy bits (as they are only ever used as placeholders
for any value) and denoted with the letter d. The last two

120

columns of this particular example are therefore encoded as
follows:

c1+x2 +y2 + 22 = 4do + 2c3 + wo
c3+ca +x3 +y3 + 23 = 4dy + 2d; + ws

Having obtained a set of k& pseudo-boolean constraints (for
a k-bit adder), we now encode these constraints in CNF using
ESPRESSO. Since the number of variables in each constraint
is fairly small (n+ |1+log, n| for an n-ary adder; at most 10
variables for 5-ary 32-bit modular addition), enumerating their
truth tables (of at most 2'° entries) is completely feasible. The
final number of clauses for each column sum depends on the
constraint, but is in any case bounded by the size of its truth
table.

V. COMPARISON WITH OTHER GENERATORS

We make a brief comparison with other encodings of SHA-1
preimage attacks found in the literature:

Encoding Variables Clauses Ratio
Our encoding 13,408 478,476 35.69
CRYPTLOGVER [3] 44 812 248,220 5.54
Plain Tseitin [4] ~ 55,000 = 235,000 =~ 4.27

In short, our encoding has fewer variables, more clauses,
and is easier to solve than the variants of the Tseitin encoding.

V1. VERIFIER

In addition to the instance generator, we also provide a
verifier for instances encoding preimage attacks. The verifier
takes the instance and a solution (as found by a SAT solver)
and verifies that the solution is indeed a valid preimage for
the (possibly partial) hash value encoded in the instance.

The verifier does not simply check that the solution satisfies
the clauses in the instance; rather, it calculates the SHA-1 hash
of the message part of the solution and checks that it matches
the hash part of the solution. This ensures not only that the
solver is correct, but that the encoding itself is correct. (Of
course, we can only ensure that a particular solution to and
encoding of a particular instance is correct, but this is good
enough in practice.)

VII. AVAILABILITY

The program and scripts are available as Free Software
(under the GNU General Public License version 3) from
https://github.com/vegard/shal-sat/. The program depends on
the logic minimiser ESPRESSO in order to run.

REFERENCES

[1] “Secure Hash Standard,” ser. FIPS, vol. 180-1.
Standards and Technology, 1995.

[2] V. Nossum, “SAT-based preimage attacks on SHA-1,” Master’s thesis,
University of Oslo, 2012.

[3] P. Morawiecki and M. Srebrny, “A SAT-based preimage analysis of
reduced KECCAK hash functions,” Cryptology ePrint Archive, Report
2010/285, 2010. [Online]. Available: http://eprint.iacr.org/2010/285.pdf

[4] M. Srebrny, M. Srebmy, and L. Stepiefi, “SAT as a programming
environment for linear algebra and cryptanalysis,” in ISAIM, 2007.

National Institute of

