Barycentric coordinates: Difference between revisions
Jump to navigation
Jump to search
Content added Content deleted
(use glm) |
(add link) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
Barycentric coordinates let you represent a coordinate as a weighted sum of three points. This can be very useful for interpolating values across a triangle, including world coordinates or texture coordinates. |
|||
=== Conversion from cartesian === |
=== Conversion from cartesian === |
||
Line 35: | Line 37: | ||
} |
} |
||
</source> |
</source> |
||
=== See also === |
|||
* https://asawicki.info/news_1721_how_to_correctly_interpolate_vertex_attributes_on_a_parallelogram_using_modern_gpus |
|||
[[Category:Graphics programming]] |
[[Category:Graphics programming]] |
Latest revision as of 15:51, 17 February 2020
Barycentric coordinates let you represent a coordinate as a weighted sum of three points. This can be very useful for interpolating values across a triangle, including world coordinates or texture coordinates.
Conversion from cartesian
// https://gamedev.stackexchange.com/a/23745
// Compute barycentric coordinates (u, v, w) for
// point p with respect to triangle (a, b, c)
glm::vec3 barycentric(glm::vec3 a, glm::vec3 b, glm::vec3 c, glm::vec3 p)
{
auto v0 = b - a;
auto v1 = c - a;
auto v2 = p - a;
float d00 = glm::dot(v0, v0);
float d01 = glm::dot(v0, v1);
float d11 = glm::dot(v1, v1);
float d20 = glm::dot(v2, v0);
float d21 = glm::dot(v2, v1);
float denom = d00 * d11 - d01 * d01;
float v = (d11 * d20 - d01 * d21) / denom;
float w = (d00 * d21 - d01 * d20) / denom;
float u = 1.0f - v - w;
return glm::vec3(u, v, w);
}
Conversion to cartesian
// https://stackoverflow.com/a/11262425
glm::vec3 cartesian(glm::vec3 a, glm::vec3 b, glm::vec3 c, glm::vec3 p)
{
return a * p.x + b * p.y + c * p.z;
}